The Neuroprotective Effect of Liraglutide is Mediated by Glucagon-Like Peptide 1 Receptor-Mediated Activation of cAMP/PKA/CREB Pathway.
نویسندگان
چکیده
BACKGROUND/AIMS Glucagon-like peptide-1 (GLP-1)-based drugs are being used to achieve better glucose control in patients with type 2 diabetes, and GLP-1 mimetics such as liraglutide have shown therapeutic potential in preventing diabetes-related microvascular and macrovascular complications as well as comorbidities such as neurodegenerative disorders. In the present study, we investigated the effects of liraglutide on primary rat cortical astrocytes treated with advanced glycation end-products (AGEs). METHODS Gene and protein expression was analyzed by quantitative real time PCR, western blots, and enzyme-linked immunosorbent assay. The caspase-3 activity was assessed using a caspase-3 colorimetric assay kit. The ROS production was measured with CM-H2DCFDA staining. The cell viability of rat astrocytes was determined using MTT assay. RESULTS Liraglutide ameliorated AGEs-induced oxidative stress, inflammatory cytokine secretion, caspase activation, and cell death in astrocytes, and reversed the AGEs mediated reduction in intracellular cyclic AMP (cAMP) levels, protein kinase A (PKA) activity, and the phosphorylation of the cAMP response element-binding (CREB) protein. The protective effects of liraglutide against AGEs-mediated toxicity were abolished by GLP-1 receptor (GLP-1R) knockdown or pretreatment of cells with the adenylyl cyclase inhibitor SQ22536 or the PKA inhibitor Rp-cAMP. CONCLUSIONS Liraglutide exerts its neuroprotective effects via the GLP-1R-mediated activation of the cAMP/PKA/CREB pathway. The results of the present study support the therapeutic potential of liraglutide for the treatment of neurodegenerative disorders.
منابع مشابه
Glucagon-like peptide 1 stimulates insulin gene promoter activity by protein kinase A-independent activation of the rat insulin I gene cAMP response element.
Glucagon-like peptide 1 (GLP-1), a hormonal activator of adenyl cyclase, stimulates insulin gene transcription, an effect mediated by the cAMP response element (CRE) of the rat insulin I gene promoter (RIP1). Here we demonstrate that the signaling mechanism underlying stimulatory effects of GLP-1 on insulin gene transcription results from protein kinase A (PKA)-independent activation of the RIP...
متن کاملPituitary adenylate cyclase-activating peptide induces long- lasting neuroprotection through the induction of activity- dependent signaling via the cyclic AMP
Pituitary adenylate cyclase-activating peptide (PACAP) is a neuroprotective peptide which exerts its effects mainly through the cAMP-protein kinase A (PKA) pathway. Here, we show that in cortical neurons, PACAP-induced PKA signaling exerts a major part of its neuroprotective effects indirectly, by triggering action potential (AP) firing. Treatment of cortical neurons with PACAP induces a rapid ...
متن کاملLiraglutide Inhibits the Apoptosis of MC3T3-E1 Cells Induced by Serum Deprivation through cAMP/PKA/β-Catenin and PI3K/AKT/GSK3β Signaling Pathways
In recent years, the interest towards the relationship between incretins and bone has been increasing. Previous studies have suggested that glucagon-like peptide-1 (GLP-1) and its receptor agonists exert beneficial anabolic influence on skeletal metabolism, such as promoting proliferation and differentiation of osteoblasts via entero-osseous-axis. However, little is known regarding the effects ...
متن کاملSynergistic effects of metformin with liraglutide against endothelial dysfunction through GLP-1 receptor and PKA signalling pathway
Metformin or glucagon-like peptide-1 (GLP-1) analogue liraglutide has cardiovascular benefits. However, it is not clear whether their combined treatment have additive or synergistic effects on the vasculature. In this study, human umbilical vein endothelial cells (HUVECs), exposed to palmitic acid (PA) to induce endothelial dysfunction, were incubated with metformin, liraglutide or their combin...
متن کاملPituitary adenylate cyclase-activating peptide induces long-lasting neuroprotection through the induction of activity-dependent signaling via the cyclic AMP response element-binding protein-regulated transcription co-activator 1
Pituitary adenylate cyclase-activating peptide (PACAP) is a neuroprotective peptide which exerts its effects mainly through the cAMP-protein kinase A (PKA) pathway. Here, we show that in cortical neurons, PACAP-induced PKA signaling exerts a major part of its neuroprotective effects indirectly, by triggering action potential (AP) firing. Treatment of cortical neurons with PACAP induces a rapid ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 36 6 شماره
صفحات -
تاریخ انتشار 2015